Slow algae, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa.
نویسندگان
چکیده
Omphalina basidiolichens are obligate mutualistic associations of a fungus of the genus Omphalina (the exhabitant) and a unicellular green alga of the genus Coccomyxa (the inhabitant). It has been suggested that symbiotic inhabitants have a lower rate of genetic change compared to exhabitants because the latter are more exposed to abiotic environmental variation and competition from other organisms. In order to test this hypothesis we compared substitution rates in the nuclear ribosomal internal transcribed spacer region (ITS1, 5.8S, ITS2) among fungal species with rates among their respective algal symbionts. To ensure valid comparisons, only taxon pairs (12) with a common evolutionary history were used. On average, substitution rates in the ITS1 portion of Omphalina pairs were 27.5 times higher than rates in the corresponding pairs of Coccomyxa since divergence from their respective ancestor at the base of the Omphalina/Coccomyxa lineage. Substitution rates in the 5.8S and the ITS2 portions were 2.4 and 18.0 times higher, respectively. The highest rate difference (43.0) was found in the ITS1 region. These are, to our knowledge, the highest differences of substitution rates reported for symbiotic organisms. We conclude that the Omphalina model system conforms to the proposed hypothesis of lower substitution rates in the inhabitant, but that the mode of transmission of the inhabitant (vertical versus horizontal) could be a prevailing factor in the regulation of unequal rates of nucleotide substitution between co-evolving symbionts. Our phylogenetic study of Coccomyxa revealed three main lineages within this genus, corresponding to free-living Coccomyxa, individuals isolated from basidiolichens Omphalina and Coccomyxa isolated from ascolichens belonging to the Peltigerales.
منابع مشابه
Photobiont association and genetic diversity of the optionally lichenized fungus Schizoxylon albescens.
The fungus Schizoxylon albescens occurs both as lichen and as saprobe. Lichenized colonies grow on the bark of Populus tremula; saprotrophic morphs grow on dead Populus branches. We wanted to (1) test whether lichenized and saprotrophic S. albescens are genetically distinct, (2) investigate photobiont association and diversity, (3) investigate the interactions between fungi and algae that occur...
متن کاملPositions of multiple insertions in SSU rDNA of lichen-forming fungi.
Lichen-forming fungi, in symbiotic associations with algae, frequently have nuclear small subunit ribosomal DNA (SSU rDNA) longer than the 1,800 nucleotides typical for eukaryotes. The lichen-forming ascomycetous fungus Lecanora dispersa contains insertions at eight distinct positions of its SSU rDNA; the lichen-forming fungi Calicium tricolor and Porpidia crustulata each contain one insertion....
متن کاملGastropods slow down succession and maintain diversity in cryptogam communities.
Herbivore effects on diversity and succession were often studied in plants, but not in cryptogams. Besides direct herbivore effects on cryptogams, we expected indirect effects by changes in competitive interactions among cryptogams. Therefore, we conducted a long-term gastropod exclusion experiment testing for grazing effects on epiphytic cryptogam communities. We estimated the grazing damage, ...
متن کاملThe recognition pattern of green algae by lichenized fungi can be extended to lichens containing a cyanobacterium as photobiont
Lichens are intimate and long-term symbioses of photosynthetic, unicellular algae or cyanobacteria and heterotrophic fungi joined to form a new biological entity different from its individual components. Specificity required for the lichen association can be defined in this context as the preferential, but not exclusive, association of a biont with another. Recognition of compatible algal cells...
متن کاملThe GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape
Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular phylogenetics and evolution
دوره 29 3 شماره
صفحات -
تاریخ انتشار 2003